
Received: 25 August 2021 | Revised: 23 March 2022 | Accepted: 3 April 2022

DOI: 10.1002/jwmg.22239

R E S E A R CH AR T I C L E

Accounting for residual heterogeneity in
double‐observer sightability models decreases
bias in burro abundance estimates

Jacob D. Hennig1 | Kathryn A. Schoenecker2 |

James W. Cain III3 | Gary W. Roemer4 | Jeffrey L. Laake5

1Contractor with the U.S. Geological Survey,

Fort Collins Science Center, 2150 Centre Ave,

Fort Collins, CO 80526, USA

2U.S. Geological Survey, Fort Collins Science

Center, 2150 Centre Ave, Fort Collins,

CO 80526, USA

3U.S. Geological Survey, New Mexico

Cooperative Fish and Wildlife Research Unit,

Department of Fish, Wildlife, and

Conservation Ecology, New Mexico State

University, Las Cruces, NM 88003, USA

4Department of Fish, Wildlife, and

Conservation Ecology, New Mexico State

University, Las Cruces, NM 88003, USA

5Independent Researcher, Escondido,

CA 92025, USA

Correspondence

Jacob D. Hennig, Fort Collins Science Center,

2150 Centre Ave, Bldg C, Fort Collins,

CO 80526, USA.

Email: jhennig@contractor.usgs.gov

Present address

Gary W. Roemer, 712 Stone Canyon Dr.,

Las Cruces, NM 88011, USA.

Funding information

U.S. Bureau of Land Management,

Grant/Award Number: Interagency

agreement L19PG00052; U.S. Geological

Survey; U.S. Department of Defense,

Fort Irwin, Grant/Award Number: MIPR

10703187

Abstract

Feral burros (Equus asinus) and horses (E. ferus caballus) inhabiting

public land in the western United States are intended to be

managed at population levels established to promote a thriving,

natural ecological balance. Double‐observer sightability (MDS)

models, which use detection records from multiple observers and

sighting covariates, perform well for estimating feral horse

abundances, but their effectiveness for use in burro populations

is less understood. These MDS models help minimize detection

bias, yet bias can be further reduced with models that account for

unmodeled variation, or residual heterogeneity, in detection

probability. In populations containing radio‐marked individuals,

residual heterogeneity can be estimated with MDS models by

including a covariate that corresponds to the marked status of a

group (MH models). Another approach is to use information from

detections missed by both observers to account for the

characteristics that make groups more or less likely to be

detected, or recaptured, by the second observer (MR models). We

used aerial survey data from 3 burro populations (Sinbad Herd

Management Area, UT [2016–2018], Lake Pleasant Herd

Management Area, AZ [2017], and Fort Irwin National Training

Center, CA [2016–2017]) to develop MDS models applicable for

feral burros in the southwestern United States. Our objectives

were to quantify precision and bias of standard MDS surveys for

feral burros and to examine which model type for incorporating
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residual heterogeneity (MH or MR) would result in the least‐

biased estimates of burro populations relative to the minimum

number known alive (MNKA) within the Sinbad Herd Manage-

ment Area. Standard MDS model estimates achieved a mean

coefficient of variation of 0.08, while underestimating MNKA by

an average of 27.1%. Accounting for residual heterogeneity

through recapture probability in MR models resulted in estimates

closer to MNKA than MH models (9.5% vs. 16.5% less than

MNKA). Our results indicate that MDS models can achieve precise

enough estimates to monitor feral burro populations, but they

routinely produce negatively biased estimates. We encourage the

use of radio‐collars to reduce bias in future burro surveys by

accounting for residual heterogeneity through MR models.
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The Wild Free‐roaming Horses and Burros Act (Public Law 92‐195) mandates the protection of feral equid

populations on federally owned public land in the United States. The Act tasks the United States Department of

Interior's Bureau of Land Management (BLM) and the United States Department of Agriculture's Forest Service to

manage feral equid populations and habitat in areas where they occurred at the time of its enactment (Public Law

92‐195). Management actions include maintaining site‐specific population targets, allocating forage to equids,

livestock, and wildlife species, applying fertility controls to select individuals, and removing individuals when the

population is above an appropriate management level (National Research Council 2013). Underpinning these

actions are abundance estimates derived from, in most areas, aerial survey counts. Raw counts are negatively biased

owing to imperfect detection (Samuel and Pollock 1981); consequently, counts must be appropriately adjusted

before they can effectively guide management.

Sightability models (Steinhorst and Samuel 1989) and double‐observer designs (Graham and Bell 1989) are 2

widely employed methods for correcting aerial counts by estimating the probability of detection and its uncertainty.

Sightability models use detections of known individuals to account for the influence of sighting covariates on

detection probability, whereas double‐observer designs imitate a 2‐sample mark‐recapture method (e.g., Lincoln‐

Petersen) to estimate detection probabilities for each observer and abundance. Each method possesses limitations

restricting their usefulness. Sightability models do not account for differences among survey observers and

conditions when they differ from the initial calibration survey to develop the model. Simple double‐observer

designs are subject to negative bias in abundance due to variation (heterogeneity) in detectability among

observation units (i.e., individuals or groups; Otis et al. 1978). Huggins (1989) proposed modeling heterogeneity in

detection probabilities as a function of covariates and provided an estimator of abundance and its precision.

Double‐observer models that use sightability covariates (i.e., MDS; Walter and Hone 2003, Lubow and Ransom

2016) generate estimates precise enough to guide management practices of feral horses (Equus ferus caballus) in the

western United States (Lubow and Ransom 2016); consequently, the BLM suggested an MDS protocol as one

allowable method for feral equid aerial surveys (BLM 2010). While MDS models appear to provide reasonable

abundance estimates for burros (E. asinus; Griffin 2015), the effectiveness of MDS models has yet to be evaluated

across multiple feral burro populations.
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Burros are notoriously more difficult to detect than horses given their smaller body size, cryptic pelage, and

small group sizes (D. Little, BLM, unpublished report; Griffin 2015). Further, burros predominantly inhabit more

topographically rugged areas, and tend to stand still when an aircraft is overhead rather than running (flushing) like

horses (Griffin 2015). The Arizona Game and Fish Department and BLM previously used a double‐observer

framework that did not make use of sighting covariates to generate estimates of burro abundances, but they

claimed that 30–70% of burros may go undetected depending on environmental conditions (D. Little, unpublished

report). The recording of sighting covariates is now standard in BLM aerial survey protocols (Griffin et al. 2020), but

the sighting covariates most important to burro detection have been assessed only for a small number of

populations (Griffin 2015, Gedir et al. 2021). It would be beneficial to use a larger sample size with detections from

additional study areas to refine our understanding of the most important covariates.

Abundance estimates from MDS surveys are typically biased low because of unmodeled (residual) heterogeneity

in detection probabilities (Borchers et al. 2006, Southwell et al. 2007, Griffin et al. 2013). This means that there is

still dependence in detection probabilities among observers even after the inclusion of sighting covariates.

Detections among observers (i.e., capture histories) are assumed to be independent of one another, yet certain

factors make some target individuals or groups more likely to be detected or missed by both observers, which

induces dependence (Borchers et al. 2006). For example, a large group of burros is much more likely to be detected

by both observers, and a group completely concealed by canopy cover is more likely to be missed by both. Such

dependency in detection among observers can be modeled by including group size and concealment cover as

covariates, but there are often unobservable or unknown dependencies that are not included in the model. That

residual (unmodeled) heterogeneity induces dependence such that the recapture probability for the second

observer will be greater than their initial capture probability. In other words, the second observer has increased

probability of detecting a group that the first observer also detected (recapture), compared to detecting a group

that the first observer missed (initial capture). When there is no residual heterogeneity, these detections are

independent events, and the capture and recapture probabilities will be the same. If independence is assumed, but

residual heterogeneity exists, the estimates of capture probability are positively biased leading to negative bias in

abundance (Otis et al. 1978, Borchers et al. 2006).

In a standard 2‐sample double‐observer design, there is no information on groups missed by both observers

(Buckland et al. 2010) and independence must be assumed without ancillary information. Consequently, researchers

have developed several different alternative approaches to account for residual heterogeneity (Buckland et al.

2010, Barker et al. 2014, Becker and Christ 2015). Populations containing radio‐marked individuals present the

opportunity to include an additional capture history in the model design that corresponds to detections of marked

individuals made by a telemetry observer (Griffin et al. 2013). During a survey, the telemetry receiver enables

perfect detection of radio‐marked individuals, and consequently, can detect groups missed by human observers.

With a large enough sample size, these detections provide the information needed to account for residual

heterogeneity.

One modeling approach for incorporating this information is to include a covariate corresponding to the radio‐

marked status (marked or unmarked) of a detected group (Griffin et al. 2013, Schoenecker and Lubow 2016,

Bristow et al. 2019). This approach, mark‐type heterogeneity (MH), relies on the assumption that there is a

difference in detection probability between groups with and without a radio‐marked individual. Radio‐marked

groups are unconditionally included in a dataset because they are perfectly detected by telemetry, whereas

unmarked groups are only conditionally included if they were seen by at least one observer. Thus, if residual

heterogeneity exists, the sample of unmarked groups should mostly consist of those that are relatively easier to

detect (Griffin et al. 2013). Further, because radio‐marked individuals are assumed to be a random sample of the

population, they should be in groups missed by both observers; thus, groups with a radio‐marked individual should

have a lower average probability of being detected by human observers, compared to unmarked groups in a set of

visual‐only observations (Griffin et al. 2013). Consequently, marked groups (which constitute the random sample)

are thought to be harder on average to detect by human observers (Griffin et al. 2013). The estimated difference in
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detection between marked and unmarked groups is then used to adjust the detection probabilities

of unmarked groups in MH models, thereby decreasing the amount of negative bias in abundance estimates

(Griffin et al. 2013).

Mark‐type heterogeneity models have been used to correct estimates of elk (Cervus canadensis) abundance

(Griffin et al. 2013, Schoenecker and Lubow 2016, Bristow et al. 2019), but they have never been evaluated relative

to a known population size. Further, the assumption of a difference in detection between marked and unmarked

groups may not always be valid, especially in populations where most groups have a non‐zero chance of being

detected. In these situations, the mark‐type model may lead researchers to infer that heterogeneity is not present,

when in fact it is. Alternatively, radio‐collars can be thought of as a permanent mark, which Laake et al. (2014)

reported can be used to assess the dependency of mark‐loss in double‐marked animals. Their approach is analogous

to estimating dependency of missed observations in a two‐sample mark‐recapture survey. Consequently, we

adapted the mark‐loss model to an MDS approach to account for residual heterogeneity by assessing dependency in

recapture probability: recapture heterogeneity (MR).

Both MH and MR approaches to accommodating residual heterogeneity depend on having radio‐collars in the

population. While radio‐collars are regularly deployed on many large ungulate populations, researchers have faced

challenges in implementing them on feral horses and burros in the United States (Hennig et al. 2020). Concerns over

equid safety barred the use of radio‐collars on federally managed feral equids for nearly 30 years (Collins et al.

2014); however, researchers recently reported that radio‐collars can be deployed on horses and burros with

minimal effects (Collins et al. 2014, Schoenecker et al. 2020). The BLM has subsequently permitted radio‐collar

deployment in some management areas. Consequently, through cooperation with the BLM, we were able to

structure the data collection required to quantify residual heterogeneity in aerial surveys of feral equids.

Feral burro populations are increasing in the United States with estimates above appropriate management

levels in most management areas (BLM 2021); therefore, the need for unbiased estimates is important. We

performed a study with the overarching goals of providing context for evaluating past estimates of burro

abundance and helping guide survey designs of future studies with the same goal. Our objectives were to quantify

precision and bias of standard MDS surveys for feral burros in the southwestern United States and to examine which

model type for incorporating residual heterogeneity (MH or MR) would result in the least‐biased estimates of burro

population size.

STUDY AREA

We performed aerial surveys in the Fort Irwin National Training Center in southern California, the Lake Pleasant

Herd Management Area (HMA) in central Arizona, and the Sinbad HMA in central Utah, USA. These areas embody a

range of climatic and topographical variation exhibited by burro populations in the western United States. Fort Irwin

houses the National Training Center, a military training base initially established for armored vehicle warfare and

live‐fire training missions. All branches of the military train on the base in a rotational bi‐weekly on‐range–off‐range

schedule with model cities and targets established for training. The entire training center encompasses 3,055 km2,

but our study area comprised approximately 1,560 km2. Fort Irwin is located in the Mojave Desert and is the driest

study area. The site has 2 main seasons, a hot, dry season from April through October and a cool, wet season from

November through March. Mean 30‐year normal precipitation was 136mm (range = 87–233) and mean

temperature was 17.3°C (range = 14.0–21.7; PRISM Climate Group 2020). Topography consists of rugged desert

mountain ranges separated by bajadas and low elevation valleys. Mean elevation was 1,011m (range = 297–1,871;

United States Geological Survey [USGS] 2016). Lower elevation areas are dominated by creosote bush (Larrea

tridentata) and white bursage (Ambrosia dumosa), and higher elevation areas contained mixed desert scrub with

species such as blackbrush (Coleogyne ramosissima), California buckwheat (Eriogonum fasciculatum), and Nevada

ephedra (Ephedra nevadensis). Other mammalian fauna included desert mule deer (Odocoileus hemionus), desert
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bighorn sheep (Ovis canadensis mexicana), coyotes (Canis latrans), kit foxes (Vulpes macrotis), desert cottontails

(Sylvilagus audubonii), and black‐tailed jackrabbits (Lepus californicus).

The Lake Pleasant HMA lies within the Sonoran Desert and represents the warmest and wettest study area.

Similar to Fort Irwin, there is a hot, dry period between April and October and cooler, wetter period between

December and March. It covers 419 km2 with mean annual 30‐year normal precipitation values and temperatures

of 335mm (range = 225–630) and 20.9°C (range = 17.0–22.3), respectively (PRISM Climate Group 2020). Mean

elevation is 631m (range = 375–1,429; USGS 2016). A flat, low elevation area comprises the southern portion of

the HMA, while the northern portion is characterized by more mountainous topography. Vegetation species are

typical of the Sonoran Desert consisting of Saguaro cactus (Carnegiea gigantea), creosote bush, and leguminous

trees such as palo verde (Parkinsonia florida) and mesquite (Prosopis spp.) Mammalian fauna included desert mule

deer, javelina (Tayassu tajacu), and cattle. Land uses are livestock grazing and human recreation.

Sinbad HMA encompasses 615 km2 and represents the highest and coldest of the study sites with a mean

elevation of 1,799m (range = 1,310–2,144; USGS 2016) and mean 30‐year normal precipitation and temperature

values of 236mm (range = 170–303) and 10.3°C (range = 7.9–12.3), respectively (PRISM Climate Group 2020).

Winter typically last from November through March with precipitation falling mainly as snow, and the summer

period between April and October is warmer and drier. Topography includes extremely rough areas with incised

drainages and flat limestone benches (BLM 2020). Vegetation cover primarily includes pinyon (Pinus spp.)‐juniper

(Juniperus spp.) woodland with needle‐and‐thread (Hesperostipa comata) and Indian ricegrass (Oryzopsis hymenoides)

in open areas (BLM 2020). Other mammalian species included pronghorn (Antilocapra americana), bighorn sheep,

and kit fox. Main land uses are livestock grazing and energy exploration and extraction.

METHODS

Radio‐collars

We deployed radio‐collars in the Fort Irwin study area between August 2015 and July 2016, in Lake Pleasant

between July 2016 and May 2017, and in Sinbad in April 2016. At Fort Irwin, we fit global positioning system (GPS;

TGW‐4500‐3 store‐on‐board; Telonics, Mesa, AZ, USA) and very high frequency (VHF) collars (Telonics MOD‐500‐2)

to burros captured via baited corral traps or vehicle‐based ground darting (Gedir et al. 2021). We transported

captured burros to a nearby BLM facility where we affixed collars before returning them back to the point of capture.

At Sinbad and Lake Pleasant HMAs, we fit Iridium (Lotek Wireless, New Market, Canada) and Globalstar collars

(Vectronic Aerospace GmbH, Berlin, Germany) to adult female burros (age ≥ 3 yr) with a body condition score >3

(Henneke et al. 1983). The BLM gathered burros using baited traps at Lake Pleasant and a helicopter gather in Sinbad

HMA. In Lake Pleasant, we spaced traps across the HMA to distribute collars widely and herded burros into a portable

manual squeeze chutes in the field to minimize their movement while we affixed radio‐collars. In Sinbad, where burros

were helicopter gathered and transported to a handling facility, we randomly selected study individuals by placing

collars on every third or fourth adult female burro in the corral line‐up until all collars were deployed. The BLM then

returned radio‐collared burros to the HMA via trailer transport.

Aerial surveys

We followed BLM and USGS standard operating procedures for conducting double‐observer aerial surveys for feral

horses and burros (Griffin et al. 2020). We used helicopters (Bell 206BIII and Bell 206L4, Bell Textron, Fort Worth,

TX, USA; Hughes 500D, MD Helicopters, Mesa, AZ, USA) to fly predefined transects spaced approximately 800m

apart between 30–60m above ground level. Helicopters flew at a speed of approximately 100 km/hour and carried
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a 4‐person crew consisting of a pilot, 1 front seat observer, and 2 rear seat observers. During the flight,

observers maintained audio and visual isolation to independently detect burro groups. Once a group passed

astern of the aircraft, observers communicated with one another to record sighting covariates within a 10‐m

buffer of the group (Griffin et al. 2020). Covariates included the count of individuals within the group, light level

(flat, high contrast, or shaded), group activity (moving or still), topographic class (rugged or smooth), visual field

type (open, broken, trees), perpendicular distance from the group to the transect line (<100 m, >100–200 m,

>200–300 m, >300–400 m, >400 m), proportion of concealing vegetation (to the nearest 0.10), proportion of

snow‐covered ground (nearest 0.10), and which side of the aircraft the group was on. If needed, observers

directed the pilot to circle back to a group to ensure proper recording of covariates. For large groups (>10

individuals), an observer captured a digital photograph, which we used to confirm group sizes after the flight

was completed. The front seat observer used a telemetry receiver to assess if a detected group contained a

radio‐marked individual. After crews flew a section of the survey area (i.e., 3–4 transects, or a topographically

discrete area), the front seat observer conducted a scan of VHF signals in the immediate survey area to

approximately locate all radio‐marked groups. We promptly located and visually observed missed radio‐marked

groups that were within areas already surveyed to record sighting covariates. We recorded such groups as

being detected solely by telemetry.

We conducted 2 flights in Fort Irwin with the first occurring from 4–6 March 2016, and the second taking place

2–4 February 2017 (Gedir et al. 2021). We conducted a complete survey to estimate the population within Fort

Irwin in 2017, but high winds prevented us from accomplishing this in 2016. We used detections from the 2016

flight to use in our models, but we did not attempt to estimate the burro abundance for this survey. We completed a

survey of the Lake Pleasant HMA between 19–23 June 2017 but also incorporated detections from 2 flights in Lake

Pleasant occurring between 30–31 October 2017 to provide extra information for our models. These flights did not

cover the entire survey area; thus we do not provide an abundance estimate. At Sinbad, we flew 5 complete surveys

occurring between 20–21 January 2016, 15–16 June 2016, 12–13 May 2017, 11–13 October 2017, and 12–13

October 2018. Both of the 2017 surveys contained extra flights conducted over the same area that we used to

increase the sample size of detections but not for calculating abundance estimates.

Statistical analyses

We pooled data from all surveys (Schoenecker et al. 2022) and fit detection models with the Huggins (1989, 1991)

closed‐capture estimator for mark‐recapture data with individual covariates in MARK (White and Burnham 1999)

using the RMark interface (Laake 2013) within the R statistical software (R CoreTeam 2021). The Huggins model is

similar to many of the other closed capture models in MARK except that abundance (N) is not included in the

likelihood with inference conditioned on the number (n) and set of observations. For a 2‐occasion Huggins model,

the likelihood (L) can be expressed as:

( ) ∏L p p c x x x n
p c p p p c

p p p p
, , | , , =

( (1 − )) ((1 − ) ) ( )

( + − )
,i i i

i

n x x x

1 2 2
10 01 11

=1

1 2 1 2 1 2

1 2 1 2

i i i
10 01 11









where p1 is the probability observer 1 detects the group, p2 is the probability observer 2 detects the group given

that observer 1 missed it, c2 is the probability observer 2 detects the group given that observer 1 saw it, and xi
jk = 1

if capture history for ith observation is jk (10, 01, or 11) and 0 otherwise. Both under independence (MDS) and for

model MH, p c=2 2 and in MR typically p c<2 2. The likelihood is slightly more complicated for the inclusion of

detection of marked animals, which expands the capture history for 3 occasions but is constructed in a similar

fashion. The above likelihood is for the unmarked groups of animals, whereas for the m marked groups that are all

found by telemetry the likelihood is:
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( ) ∏L p p c x x x x p p p c p p p c, , | , = ((1 − )(1 − )) ( (1 − )) ((1 − ) ) ( ) .i i i i
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=1
1 2 1 2 1 2 1 2i i i i

00 10 01 11


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



The recapture probability c2 can only be estimated with the inclusion of marked groups.

Although, not shown in the likelihood formula above, the capture and recapture probabilities can vary across

observations based on covariates. We used the logit link to incorporate covariates into the models for initial (p1, p2)

and recapture probabilities (c2). Abundance is estimated as:

ˆ ∑N
p p p p

=
1

( + − )i

n

i=1 1 2 1 2

where the subscript i is used to recognize that the denominator can vary for each observation based on covariate

values. Marked groups are simply added to the estimate without error.

We used the DoubleObs (Laake 2021) package in R to handle abundance estimation because MARK does not

incorporate group size into estimating abundance within the Huggins model. Also, MARK will not generate the

correct abundance estimates under model MH, but DoubleObs does. When animals are in groups, the total

abundance is estimated using:

ˆ ∑ ∑N
g

p p p p
g=

( + − )
+

i

n
i

i i

m

i
=1 1 2 1 2 =1

where gi is the size of the ith group. The DoubleObs package also provides model‐averaged estimates of

abundance.

We first developed a standard MDS model using 2 capture histories coinciding with the pooled detections of the

pilot and front seat observer (observer 1), the pooled detections of the rear seat observers (observer 2), and records

of sighting covariates. For these models, we withheld all detections made solely with the telemetry unit. This

represents the data collected during standard double‐observer aerial surveys where radio‐collars are absent (Griffin

et al. 2020). We used burro groups as the unit of observation to account for the lack of independence of multiple

burros in a group; however, some groups consisted of only 1 burro.

We then used a dataset including all detections to develop models incorporating residual heterogeneity. We

structured these models to create capture histories with 3 occasions: the telemetry observer, observer 1, and

observer 2. Because the telemetry observer had perfect detection of radio‐marked groups and no ability to detect

unmarked groups, we fixed detection probabilities for the telemetry observer to p = 1 for radio‐marked groups and

p = 0 for unmarked groups. If we consider the observer portion of the capture history, the probability structure for

the 4 capture histories (00, 10, 01, 11) are p p(1 − )(1 − )1 2 , p c(1 − )1 2 , p p(1 − )1 2, and p c1 2. The first capture history is

only available for marked groups and for those groups the sum of the probabilities is 1. For unmarked groups, the

sum of the probabilities is p p p p+ −1 2 1 2, which is used to condition on the number of observations in the likelihood

(e.g., probability for 10 is p c p p p p(1 − )/[ + −1 2 1 2 1 2]). We used this model structure for Huggins in MARK to fit

models accounting for residual heterogeneity in 3 different ways. The first (MI) is a model that assumes

independence in the initial and recapture probabilities of observer 2 (i.e., no residual heterogeneity; p2 = c2). Second,

we fit the MH mark‐type heterogeneity models by including a covariate corresponding to the marked status of a

group to estimate the detection difference between marked and unmarked groups (Griffin et al. 2013). The

coefficient (α) for the covariate will be negative for marked groups if it incorporates residual heterogeneity. In this

model, recapture probability is still assumed to be the same as initial detection probability of observer 2 (p2 = c2).

Lastly, we fit the MR recapture heterogeneity model. This is done by including a covariate for c2 (recapture

probability of observer 2) corresponding to whether observer 1 detected a group (1) or not (0). The models are

constructed such that the coefficient of the covariate (β) is the difference between c2 and p2 on the logit scale (log

(c2/(1 − c2)) − log(p2/(1 − p2)) = β). If residual heterogeneity is not present, β = 0 and β > 0 if there is residual

heterogeneity because p2 < c2. It may be possible to have a model MRH combining both approaches, but this would
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require a substantial number of marked groups. Schoenecker et al. (2022) provides the data and the R code used to

structure all model types is in Supporting Information (SI.1)

For each of the 4 model types (standard MDS without telemetry detections, MI independence model with telemetry

detections, MH mark‐type heterogeneity, and MR recapture heterogeneity), we first fit a base model containing only an

observer position effect (front vs. rear seat). We then ran univariate models of all sighting covariates and interactions

between each sighting covariate and observer position. We ranked models using Akaike's Information Criterion

corrected for small sample sizes (AICc; Akaike 1998, Burnham and Anderson 2002) to assess which covariates improved

model fit relative to the base model. We brought forth all covariates ranked better than the base model to compete in

the full model set but kept only the highest‐ranked covariate among highly correlated variables (r > 0.5). We then ran

models containing all combinations of the sighting covariates that indicated better fit than the base model. To obtain

abundance estimates per model and survey, we used a modified Horvitz‐Thompson estimator, dividing the group size of

each detected burro group by its estimated detection probability and summed across all groups detected per survey

(Steinhorst and Samuel 1989). For residual heterogeneity models, we applied this correction only to unmarked groups

because radio‐marked groups were detected without error. We then model‐weighted (wi; Burnham and Anderson 2002)

the resulting model‐specific abundance estimates to obtain a final abundance estimate per survey.

We evaluated the accuracy of each model by comparing model‐generated abundance estimates to the

minimum number known alive (MNKA) within Sinbad HMA. The BLM conducted a gather in April 2016, attempting

to remove all burros from the HMA and then re‐released a subset of these individuals for a concurrent behavioral

ecology research study. Not all burros were removed during the capture operation, but subsequent ground‐based

observations led to reliable identification of those that had remained. Of 236 burros removed, 103 were returned to

the HMA, all of which were marked with a unique freeze‐brand. Ground observers maintained a constant field

presence between March and September 2016–2019 to record individuals seen, with additional observations in

winter when weather permitted. Observers identified individuals by freeze‐marks or distinct markings in their

pelage. While the Sinbad HMA covers a large area (615 km2), we know from GPS telemetry location data and aerial

survey data that burros do not use the entire HMA and tend to concentrate in certain areas. Therefore, we are

confident that our calculations of the MNKA per year were close to the true abundances within the HMA.

RESULTS

We detected 610 burro groups across 9 helicopter surveys, 549 of which followed survey protocol and were thus

included in detection models. Detections not following protocol (n = 61) included situations where a new burro group

was spotted while circling to count a previously spotted group, or when there was communication between observers.

Though these detections violated survey protocol, the groups were still sighted by >1 observer so we applied model‐

specific correction factors and included them in abundance estimates. At Fort Irwin, we detected 79 burro groups in the

March 2016 survey and 149 groups in the February 2017 survey, with observers detecting 2 of 8 and 7 of 13 radio‐

marked groups, respectively. At the Lake Pleasant HMA, we detected 81 groups during the June 2017 survey, but radio‐

collars were not present at the time of this survey. In October 2017, we detected 108 groups and 12 of 28 radio‐marked

groups. We detected 32 groups in the January 2016 survey of the Sinbad HMA, but no radio‐marked groups were

present. We recorded 26, 42, 58, and 35 detections during the June 2016, May 2017, October 2017, and October 2018

surveys, respectively. Of the radio‐marked groups present, observers detected 8 of 17, 12 of 18, 23 of 31, and 7 of 10,

respectively. Across all surveys, human observers detected 78 of the 125 (62.4%) radio‐marked groups.

Of the residual heterogeneity models, the MR model performed best, with the top‐ranked MR model 11.43 AICc

units lower than the top‐ranked MH model (Table 1). The difference between the MR model and the other models is

depicted by lower initial detection probabilities, whereas the recapture probability (c2) is on par with the initial

detection probabilities of observer 2 (p2) estimated by the other models (Figure 1; Table 2). The lower mean

detection estimated in MR models translated into higher abundance estimates (Table 3).
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TABLE 1 Model‐selection information for estimating feral burro abundances from helicopter surveys
conducted within the National Training Center, Fort Irwin, California, Lake Pleasant Herd Management Area,
Arizona, and Sinbad Herd Management Area, Utah, USA, 2016–2018. Model sets included a standard double‐
observer sightability model (MDS), and 3 sets that included detections of radio‐marked individuals: MI models
assuming no residual heterogeneity in detection probability (independence), MH models accounting for residual
heterogeneity as the difference in detection between marked and unmarked groups (mark‐type heterogeneity),
and MR models accounting for residual heterogeneity through recapture probability (recapture heterogeneity).
Columns represent the number of parameters (K), Akaike's Information Criterion adjusted for small sample sizes
(AICc), difference between a given model and the top‐ranked model within a set (ΔAICc), and model weight (wi).
Models with ΔAICc ≤ 4 along with a base model are shown.

Modela K AICc ΔAICc wi

MDS models

Pos + site + size + conceal + dist:fr + dist:r + topo:fr + topo:r +
flat:r + ps:fr

11 990.86 0.00 0.67

Pos + site + size + conceal + topo:fr + topo:r + dist:fr + dist:r + ps:fr 10 992.78 1.92 0.25

Pos + site 3 1,068.07 77.21 0.00

MI models

Pos + site + size + conceal + dist:fr + dist:r + topo:f + topo:r + flat:r + ps:fr 11 1,138.34 0.00 0.57

Pos + site + size + conceal + dist:fr + dist:r + topo:f + topo:r + ps:fr 10 1,139.60 1.26 0.30

Pos + site + size + conceal + dist:fr + dist:r + topo:f + topo:r + flat:r 10 1,142.15 3.81 0.08

Pos + site 3 1,257.56 119.22 0.00

MH models

Pos + type + site + size + conceal + dist:fr + dist:r + topo:r + topo:r +
flat:r + ps:fr

12 1,140.19 0.00 0.57

Pos + type + site + size + conceal + dist:fr + dist:r + topo:fr + topo:r + ps:fr 11 1,141.46 1.27 0.30

Pos + type + site + size + conceal + dist:fr + dist:r + topo:fr + topo:r + flat:r 11 1,144.04 3.85 0.08

Pos + type + site 4 1,257.45 117.26 0.00

MR models

Pos + c:het:r + site + size + conceal + dist:fr + dist:r + topo:fr + topo:r +
flat:r + ps:fr

12 1,128.76 0.00 0.62

Pos + c:het:r + site + size + conceal + dist:fr + dist:r + topo:fr + topo:r +
ps:fr

11 1,130.65 1.89 0.24

Pos + c:het:r + site + size + conceal + dist:fr + dist:r + topo:fr + topo:r +
flat:f

11 1,132.49 3.73 0.10

Pos + c:het:r + site 4 1,233.30 104.54 0.00

apos = observer position (front vs. rear seat), site = site effect (Fort Irwin vs. Sinbad or Lake Pleasant), size = natural
logarithm of group size, conceal = proportion of concealing vegetation within 10m of detected group, dist:fr = distance
effect on front observer, dist:r = distance effect on rear observer, topo:fr = rugged topographic class effect on front
observer, topo:r = rugged topographic class effect on rear observer, flat:r = flat lighting class effect on rear observer,
ps = pilot side effect on front observer, type = effect of mark type (marked vs. unmarked), c:het:rear = effect of the front

observer capture history (het) applied to recapture probability (c) and rear seat capture history.
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F IGURE 1 Estimates of rear seat observer detection probability (p2) from double‐observer sightability models
as a function of burro group size (A) and the proportion of concealing vegetation within 10m of a detected group
(B). Black lines represent estimates from recapture heterogeneity (MR) models incorporating residual heterogeneity
in detection through recapture probability (solid = initial detection probability [p2]; dashed = recapture probability
[c2]), blue lines represent estimates from independence (MI) models assuming independence in detection among
observers, red lines correspond to estimates from mark‐type heterogeneity (MH) models accounting for residual
heterogeneity as the difference in detection between marked and unmarked groups, and gold lines represent
standard double‐observer sightability (MDS) models. We pooled data from helicopter surveys conducted in the
National Training Center, Fort Irwin, California, Lake Pleasant Herd Management Area, Arizona, and Sinbad Herd
Management Area, Utah, USA, 2016–2018.

TABLE 2 Model‐averaged mean detection probability estimates and standard errors for each parameter in
different models estimating detection of burros across helicopter surveys in National Training Center, Fort Irwin,
California, Lake Pleasant Herd Management Area, Arizona, and Sinbad Herd Management Area, Utah, USA,
2016–2018. Model types included a standard double‐observer sightability model (MDS), and 3 model sets that
included detections of radio‐marked individuals: MI models assuming no residual heterogeneity in detection
probability (independence), MH models accounting for residual heterogeneity as the difference in detection
between marked and unmarked groups (mark‐type heterogeneity), and MR models accounting for residual
heterogeneity through recapture probability (recapture heterogeneity).

Parameter MDS MI MH MR

Front seat (p1) 0.52 (0.03) 0.46 (0.03) 0.47 (0.03) 0.39 (0.03)

Rear seat (p2) 0.67 (0.03) 0.60 (0.03) 0.61 (0.03) 0.43 (0.06)

Front seat (p1)
a 0.45 (0.04)

Rear seat (p2)
a 0.59 (0.04)

Recapture (c2) 0.56 (0.03)

aDetection probability of radio‐marked groups.
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TABLE 3 Mean estimate of overall detection probability accounting for both observers (p), raw counts,
abundance estimates, minimum number of known alive (MNKA) burros, standard errors (SE), coefficients of
variation (CV), and lower (LCI) and upper (UCI) 95% confidence intervals from 7 helicopter surveys of feral burros in
National Training Center, Fort Irwin, California, Lake Pleasant Herd Management Area, Arizona, and Sinbad Herd
Management Area, Utah, USA, 2016–2018. We generated estimates using a standard double‐observer sightability
model (MDS), and 3 model sets that included detections of radio‐marked individuals: MI models assuming no
residual heterogeneity in detection probability (independence), MH models accounting for residual heterogeneity as
the difference in detection between marked and unmarked groups (mark‐type heterogeneity), and MR models
accounting for residual heterogeneity through recapture probability (recapture heterogeneity).

Survey p Raw count Estimate MNKA SE CV LCI UCI

MDS models

Fort Irwin – Feb 2017 0.79 573 680 34 0.05 631 771

Lake Pleasant – Jun 2017a 0.81 379 453 29 0.06 415 533

Sinbad – Jan 2016a 0.86 123 138 236 10 0.07 128 173

Sinbad – Jun 2016 0.85 73 92 136 14 0.14 78 141

Sinbad – May 2017 0.86 102 117 159 8 0.06 108 141

Sinbad – Oct 2017 0.78 128 148 182 12 0.08 135 188

Sinbad – Oct 2018 0.82 145 178 213 18 0.10 157 236

MI models

Fort Irwin – Feb 2017 0.76 602 723 37 0.05 670 818

Lake Pleasant – Jun 2017a 0.76 379 495 40 0.08 439 601

Sinbad – Jan 2016a 0.83 123 146 236 14 0.09 131 190

Sinbad – Jun 2016 0.82 118 125 136 6 0.06 120 149

Sinbad – May 2017 0.81 116 130 159 8 0.06 121 154

Sinbad – Oct 2017 0.71 143 168 182 15 0.09 151 216

Sinbad – Oct 2018 0.78 158 186 213 16 0.08 168 236

MH models

Fort Irwin – Feb 2017 0.75 602 734 48 0.07 669 865

Lake Pleasant – Jun 2017a 0.75 379 500 43 0.09 441 616

Sinbad – Jan 2016a 0.82 123 148 236 15 0.10 131 195

Sinbad – Jun 2016 0.81 118 125 136 6 0.05 120 150

Sinbad – May 2017 0.80 116 131 159 8 0.06 122 158

Sinbad – Oct 2017 0.70 143 169 182 16 0.09 152 220

Sinbad – Oct 2018 0.77 158 187 213 16 0.09 168 239

MR models

Fort Irwin – Feb 2017 0.62 602 855 85 0.10 736 1,080

Lake Pleasant – Jun 2017a 0.66 379 571 64 0.11 480 742

Sinbad – Jan 2016a 0.73 123 165 236 21 0.13 140 230

Sinbad – Jun 2016 0.72 118 130 136 9 0.07 121 163

(Continues)
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TABLE 3 (Continued)

Survey p Raw count Estimate MNKA SE CV LCI UCI

Sinbad – May 2017 0.71 116 143 159 13 0.09 127 182

Sinbad – Oct 2017 0.61 143 184 182 22 0.12 158 253

Sinbad – Oct 2018 0.68 158 204 213 22 0.11 176 271

aNo radio‐collars present in population at time of survey.

TABLE 4 Estimates and standard errors of beta coefficients found in the top‐ranked models for estimating
detection probability of burros across helicopter surveys in National Training Center, Fort Irwin, California, Lake
Pleasant Herd Management Area, Arizona, and Sinbad Herd Management Area, Utah, USA, 2016–2018. Model
types included a standard double‐observer sightability model (MDS), and 3 model sets that included detections of
radio‐marked individuals: MI models assuming no residual heterogeneity in detection probability (independence),
MH models accounting for residual heterogeneity as the difference in detection between marked and unmarked
groups (mark‐type heterogeneity), and MR models accounting for residual heterogeneity through recapture
probability (recapture heterogeneity).

Variablea MDS MI MH MR

Intercept 1.00 (0.31) 0.97 (0.29) 0.90 (0.33) 0.48 (0.35)

Rear −0.79 (0.26) −0.66 (0.25) −0.67 (0.25) −1.11 (0.26)

Site −0.96 (0.23) −0.96 (0.22) −0.97 (0.22) −1.00 (0.24)

Size 0.62 (0.13) 0.65 (0.12) 0.65 (0.12) 0.71 (0.13)

Conceal −3.16 (0.84) −4.21 (0.74) −4.16 (0.74) −3.94 (0.78)

Dist:fr −1.56 (0.48) −1.80 (0.45) −1.80 (0.45) −1.56 (0.49)

Dist:r 1.07 (0.61) 0.44 (0.51) 0.47 (0.51) 0.69 (0.52)

Topo:fr −1.43 (0.33) −1.45 (0.28) −1.43 (0.28) −1.37 (0.29)

Topo:r −0.73 (0.38) −0.84 (0.28) −0.81 (0.29) −0.55 (0.29)

Flat:r 0.55 (0.28) 0.44 (0.25) 0.44 (0.25) 0.46 (0.23)

Ps:fr −0.52 (0.20) −0.46 (0.20) −0.46 (0.19) −0.45 (0.19)

Type 0.08 (0.20)

C:het:r 0.93 (0.27)

aRear = effect of rear seat observer position, Site = site effect (Fort Irwin vs. Sinbad or Lake Pleasant), Size = natural
logarithm of group size, Conceal = proportion of concealing vegetation within 10m of detected group, Dist:fr = distance

effect on front observer, Dist:r = distance effect on rear observer, Topo:fr = rugged topographic class effect on front
observer, Topo:r = rugged topographic class effect on rear observer, Flat:r = flat lighting class effect on rear observer,
Ps:fr = pilot side effect on front observer, Type = effect of mark type (marked vs. unmarked), C:het:rear = effect of the front
observer capture history (het) applied to recapture probability and rear seat capture history.

On average, MR models resulted in abundance estimates 19.2%, 8.3%, and 7.8% greater than standard MDS,

MH, and MI model estimates, respectively. Recapture heterogeneity models (MR) also produced the least biased

estimates when compared to the surveys for which we knewMNKA (Table 3). The MR model estimates ranged from

30.1% below to 1.1% above MNKA (x̄ = 9.5% below). The MH model estimates ranged from 7.1–37.2% (x̄ = 16.4%)

below MNKA, the MI estimates ranged from 7.7–38.1% (x̄= 17.0%) below MNKA, and the standard MDS ranged
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from 16.4–41.5% (x̄ = 27.1%) below MNKA. The MR model produced 95% confidence intervals that encompassed

the MNKA in 4 of 5 surveys (Table 3), compared to 95% confidence intervals capturing MNKA in only 3 of 5 surveys

for the other models. Average precision, measured by the mean coefficient of variation, was 0.07 for the MI model,

0.08 for the MDS and MH models, and 0.10 for the MR models.

The sighting covariates included in the top models were identical across all model types (Tables 1 and 4).

Detection probability predictably increased with larger group sizes and decreased with greater proportions of

concealing vegetation surrounding a burro group (Table 4; Figure 1). Detection probabilities averaged higher for

rear versus front seat observers (Table 2). The coefficient for rear seat observers was negative for all model types

(Table 4), but this was offset by rear seat observers being better than front seat observers at detecting burro groups

at farther distances, in rugged topography, and in flat lighting (Table 4). Moreover, detection probability by front

seat observers declined when burro groups were on the pilot's side of the aircraft (Table 4). Detection was also

lower in Fort Irwin compared to the Lake Pleasant and Sinbad HMA study areas (Table 4).

DISCUSSION

Unbiased abundance estimates of feral burros are imperative for guiding management plans that promote the

balance of healthy herds and sustainable ecosystems. Our results indicated that standard MDS models used for

burros can achieve estimates on par in accuracy and precision with MDS surveys of other ungulate species

(Griffin et al. 2013, Lubow and Ransom 2016). Nonetheless, standard MDS estimates of burros were

consistently biased low with respect to MNKA. Estimates from MDS models were also more biased than the

estimates from models that used detections of radio‐collars to account for residual heterogeneity. Radio‐

marking burros provided 3 main benefits. First, the telemetry observer can locate groups missed by all human

observers. Second, detections made by the telemetry observer can be included without error in abundance

estimates, thereby increasing survey precision. Third, including telemetry as an additional capture history

allowed us to account for residual heterogeneity in detection probability and decrease bias in abundance

estimates.

The MR recapture heterogeneity model outperformed the previously used MH model in terms of AICc

support, less‐biased estimates, and frequency of 95% confidence intervals encompassing MNKA. The MR

model confirmed that residual heterogeneity indeed existed, while the MH model implied that it did not. The

top‐ranked MH model was nearly 2 AICc units worse than the top‐ranked MI model, and because the MH model

only differs from the MI model by the inclusion of the mark‐type covariate, little additional variation was

explained by that covariate's inclusion. Compared to estimates from MR, the initial detection estimates were

correspondingly biased high in the MH model, leading to negatively biased estimates of abundance. A covariate

of mark‐type may be warranted in populations where several groups have zero chance of being detected by

human observers (i.e., a lone individual completely obscured by vegetation), but our results indicated little

presence of such instances in our dataset.

Our study builds upon analyses by Griffin (2015) and Gedir et al. (2021) by examining sighting covariates that

most strongly influence burro detection across multiple populations. A set of 8 covariates explained a large

proportion of the variation in detection probabilities among burro groups. Larger group sizes, regardless of species,

are easier to detect (Udevitz et al. 2006, Ransom 2012, Griffin 2015, Gedir et al. 2021), and this was further

corroborated by our study. Predictably, detection declined with greater proportions of concealing vegetation cover

surrounding burro groups. Our data revealed evidence of interactions between observer position and 4 different

covariates. Rear seat observers were better than front seat observers at detecting burro groups in rugged

topography, in flat lighting, and at farther distances. A site effect of Fort Irwin compared to Sinbad and Lake

Pleasant indicated that detection probability was lower in Fort Irwin, possibly because observers had less survey
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experience or because of other unexplained heterogeneity not captured by the information provided by missed

radio‐marked groups.

As was true in 5 of 6 data sets in Griffin (2015), regardless of model type, rear seat observers had higher detection

probabilities than front seat observers. We expected this result given that helicopter surveys of bison (Bison bison),

burros, and elk have also reported greater detection by rear seat observers (Griffin 2015, Schoenecker and Lubow

2016, Bristow et al. 2019, Gedir et al. 2021, Hennig et al. 2021). This result may seem counterintuitive given the larger

field of view presented to front seat observers, but a larger field of view also translates into searching a larger area;

thus, front seat observers in those studies and in this study spend more effort scanning a wide area closer to the

aircraft and need to identify burros from multiple angles compared to rear seat observers who can fully direct their

attention to picking out burros in a narrower but longer viewshed. The pilot's foremost role is to fly the aircraft safely;

it is well established that observations on the pilot's side of the aircraft have lower front seat detection probabilities

(Lubow and Ransom 2016). Finally, for surveys such as these in which the front seat observers were also tasked with

using telemetry receivers, that may have contributed to increased distraction during surveys.

The inclusion of radio‐marked groups helped to decrease the amount of bias in abundance estimates, yet there

was consistent negative bias across surveys. The January 2016 survey in the Sinbad HMA produced particularly biased

estimates. Survey practitioners noted snow cover on the ground with contrasting dark‐colored conifers, which made

for difficult sighting conditions. Further, there were no radio‐marked burros in the population at this time, preventing

us from gaining information from undetected groups in this survey. Other sources of bias could be attributed to

observer‐specific differences in sighting probability. Observer acuity can significantly affect detection bias (Shirley et al.

2012), but we did not include detection parameters for each observer because our pooled dataset included 17 unique

observers and 5 different pilots, rendering their inclusions impractical. Undercounting is a potential source of bias, but

we believe this to be a small source of bias because group sizes were small (90% of observations had <10 individuals)

and we used photographs to reconcile counts of large groups. The undercounting of group size is likely on the scale of

1–2 individual burros rather than tens of individuals in species with larger group sizes (i.e., horses, elk; Lubow and

Ransom 2016, Schoenecker and Lubow 2016). Some radio‐collared individuals may go undetected during surveys. Our

study design assumes perfect detection of groups by the telemetry observer, but some radio signals may not be picked

up in rugged topography or because of technological issues; thus, information from these groups cannot be included.

Further, our model assumes that all radio‐collared groups are perfectly detected by the telemetry unit, and we

accomplished this in our study. If radio‐collared groups were detected by human observers but not the telemetry unit,

then the model would have to be modified. Finally, it may be possible to use mark‐recapture distance sampling (Laake

and Borchers 2004, Burt et al. 2014) in this context, but it would require additional development to incorporate the

marked animals and was beyond the scope of this study. This framework would allow for a non‐linear response of

detection to distance, which could remove the remaining negative bias; thus; it is worth future investigation.

Bias is usually unknown in population estimates. For this reason, the goal of surveys is typically to maximize

precision (commonly measured by CV) because routinely collected, precise estimates facilitate detection of

population fluctuations (Cochran 1977, Hodgson et al. 2016). The MH models developed for elk in Mount Rainier

National Park and in the San Luis Valley of Colorado, USA, resulted in mean coefficients of variation of 0.08 and

0.09, respectively (Griffin et al. 2013, Schoenecker and Lubow 2016). In one study, MDS models developed for feral

horses using detections from 4 different management areas resulted in a mean coefficient of variation of 0.15

(range = 0.02–0.25; Lubow and Ransom 2016). All of our model sets produced coefficient of variation estimates

within that range reported for horses, suggesting that current BLM aerial survey protocols can be considered

effective for monitoring burro populations. Nonetheless, decision‐makers may put greater value on unbiased

estimates because of the federal legislation that motivates these surveys, and standard MDS model estimates were

routinely biased low. While MR models had the greatest mean coefficient of variation across surveys, the mean

paired difference in coefficient of variation per survey was low (MR vs. MDS = 0.02; MR vs. MI = 0.03; MR vs. MH =

0.03). This minor difference in survey precision was offset by the least‐biased abundance estimates; thus, we

recommend MR models for use in future burro surveys.
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MANAGEMENT IMPLICATIONS

Double‐observer sightability models can result in relatively precise abundance estimates of burros; therefore, we

recommend maintaining standard operating procedures for conducting aerial surveys. Managers should recognize

that dependency in detection among observers leads to negatively biased estimates, but this can be modeled by

including detections of radio‐marked groups. Deploying radio‐collars ostensibly increases survey costs and requires

additional effort to capture and collar individuals; therefore, managers should weigh whether decreasing bias is

worth the additional resources. Future surveys will be improved with more detection data of radio‐marked burros,

however, so we encourage radio‐collar deployment in as many management areas as possible.
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